Cyclosporin A inhibits the growth of neonatal MHC-expressing myotubes independent of NFATc1 and NFATc3 in the mechanically overloaded soleus muscle of mice

نویسندگان

  • Kunihiro Sakuma
  • Akihiko Yamaguchi
چکیده

The molecular signaling pathway linked to hypertrophy of the anti-gravity/postural soleus muscle after mechanical overloading has not been identified. Using Western blot and immunohistochemical analyses, we investigated whether the amounts of NFATc3, GSK-3, NFATc1, and neonatal MHC change in the mechanically overloaded soleus muscle after cyclosporin A (CsA) treatment. Adult male ICR mice were subjected to a surgical ablation of the gastrocnemius muscle and treated with either CsA (25 mg/Kg) or vehicle once daily. They were sacrificed at 2, 4, 7, 10, and 14 days post-injury. Mechanical overloading resulted in a significant increase in the wet weight and the cross-sectional area of slow and fast fibers of the soleus muscle in placebo-treated mice but not CsA-treated mice. After 4 days of mechanical overloading, we observed a similar co-localization of neonatal MHC and NFATc3 in several myotubes of both mice. The placebo-treated mice possessed larger myotubes with neonatal MHC than CsA-treated mice. At 7 days, mechanical overloading induced marked expression of neonatal MHC in myotubes and/or myofibers. Such neonatal MHC-positive fibers emerged less often in the hypertrophied soleus muscle subjected to treatment with CsA. CsA treatment did not significantly change the amount of GSK-3 protein in the soleus muscle. The modulation of growth in neonatal MHC-positive myofibers by CsA treatment may inhibit the hypertrophic process in the soleus muscle after mechanical overloading.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new role for the calcineurin/NFAT pathway in neonatal myosin heavy chain expression via the NFATc2/MyoD complex during mouse myogenesis.

The calcineurin/NFAT (nuclear factor of activated T-cells) signaling pathway is involved in the modulation of the adult muscle fiber type, but its role in the establishment of the muscle phenotype remains elusive. Here, we show that the NFAT member NFATc2 cooperates with the basic helix-loop-helix transcription factor MyoD to induce the expression of a specific myosin heavy chain (MHC) isoform,...

متن کامل

Extracellular signal-regulated kinase 1/2-mediated phosphorylation of p300 enhances myosin heavy chain I/β gene expression via acetylation of nuclear factor of activated T cells c1

The nuclear factor of activated T-cells (NFAT) c1 has been shown to be essential for Ca(2+)-dependent upregulation of myosin heavy chain (MyHC) I/β expression during skeletal muscle fiber type transformation. Here, we report activation of extracellular signal-regulated kinase (ERK) 1/2 in Ca(2+)-ionophore-treated C2C12 myotubes and electrostimulated soleus muscle. Activated ERK1/2 enhanced NFAT...

متن کامل

Regulation of soluble guanylyl cyclase- 1 expression in chronic hypoxia-induced pulmonary hypertension: role of NFATc3 and HuR

de Frutos S, Nitta CH, Caldwell E, Friedman J, González Bosc LV. Regulation of soluble guanylyl cyclase1 expression in chronic hypoxia-induced pulmonary hypertension: role of NFATc3 and HuR. Am J Physiol Lung Cell Mol Physiol 297: L475–L486, 2009. First published July 10, 2009; doi:10.1152/ajplung.00060.2009.—The nitric oxide/soluble guanylyl cyclase (sGC) signal transduction pathway plays an i...

متن کامل

Nuclear factor of activated T-cell c3 inhibition of mammalian target of rapamycin signaling through induction of regulated in development and DNA damage response 1 in human intestinal cells

The nuclear factor of activated T-cell (NFAT) proteins are a family of transcription factors (NFATc1-c4) involved in the regulation of cell differentiation. We identified REDD1, a negative regulator of mammalian target of rapamycin (mTOR) through the tuberous sclerosis complex (TSC1/2 complex), as a new molecular target of NFATc3. We show that treatment with a combination of phorbol 12-myristat...

متن کامل

Regulation of soluble guanylyl cyclase-alpha1 expression in chronic hypoxia-induced pulmonary hypertension: role of NFATc3 and HuR.

The nitric oxide/soluble guanylyl cyclase (sGC) signal transduction pathway plays an important role in smooth muscle relaxation and phenotypic regulation. However, the transcriptional regulation of sGC gene expression is largely unknown. It has been shown that sGC expression increases in pulmonary arteries from chronic hypoxia-induced pulmonary hypertensive animals. Since the transcription fact...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011